DGX-Pixels Pattern Analysis for Sparky

This directory contains comprehensive analysis of DGX-Pixels orchestration and parallelization patterns for design and implementation of Sparky.

Generated Documentation

1. START HERE: ANALYSIS_SUMMARY.md

Quick overview of the analysis (10-15 minutes)

  • What was analyzed
  • Key findings (5 major insights)
  • Critical patterns (4 diagrams)
  • Top 10 insights for Sparky
  • How to use these documents
  • Next steps for immediate action

2. QUICK REFERENCE: DGXPIXELS_PATTERN_REFERENCES.md

Fast lookup guide and learning paths (15 minutes)

  • Key files by category with study times
  • 8 core patterns to replicate
  • Must-read files in recommended order (2.5 hour path)
  • Implementation checklist
  • Copy commands for quick setup
  • Adaptation notes for Sparky
  • Dependency graph
  • 3-level learning paths (executive, implementation, mastery)

3. COMPREHENSIVE GUIDE: DGX_PIXELS_ORCHESTRATION_PATTERNS.md

Complete reference with all details (60+ minutes)

  • 11 major sections
  • Orchestrator architecture with diagrams
  • All 18 workstreams with complete matrix
  • Justfile patterns and examples
  • Nushell module organization and examples
  • Rust project structure with Cargo.toml details
  • Python project structure
  • Docker Compose architecture and patterns
  • ZeroMQ IPC communication patterns
  • Project structure template for Sparky
  • CI/CD and testing patterns
  • Monitoring & observability setup
  • Agent spawning patterns
  • 11 critical insights
  • Quick command reference

Quick Navigation

I want to…

  • Get oriented quickly → Read ANALYSIS_SUMMARY.md (10 min)
  • Find specific files → See DGXPIXELS_PATTERN_REFERENCES.md (5 min lookup)
  • Understand architecture → Section 1 of DGX_PIXELS_ORCHESTRATION_PATTERNS.md (20 min)
  • See implementation patterns → Section 3 of DGX_PIXELS_ORCHESTRATION_PATTERNS.md (30 min)
  • Understand Docker setup → Section 4 of DGX_PIXELS_ORCHESTRATION_PATTERNS.md (20 min)
  • Learn orchestration → Section 9 of DGX_PIXELS_ORCHESTRATION_PATTERNS.md (20 min)
  • Get source files locations → DGXPIXELS_PATTERN_REFERENCES.md § Quick Reference (5 min)
  • Copy patterns to Sparky → DGXPIXELS_PATTERN_REFERENCES.md § Quick Copy Commands (5 min)

Study Path Recommendations

Path 1: Executive Overview (2.5 hours)

  1. ANALYSIS_SUMMARY.md (10 min)
  2. DGXPIXELS_PATTERN_REFERENCES.md Must-Read Files (20 min)
  3. dgx-pixels/CLAUDE.md (30 min)
  4. dgx-pixels/docs/orchestration/meta-orchestrator.md (30 min)
  5. dgx-pixels/justfile (40 min)
  6. dgx-pixels/docker/docker-compose.yml (30 min)

Output: Understand patterns, know where files are, ready to plan Sparky structure

Path 2: Implementation Ready (1 day)

  1. All of Path 1
  2. DGX_PIXELS_ORCHESTRATION_PATTERNS.md § 1-6 (2 hours)
  3. dgx-pixels/scripts/nu/config.nu (20 min)
  4. dgx-pixels/scripts/nu/modules/github.nu (25 min)
  5. dgx-pixels/rust/Cargo.toml (10 min)
  6. dgx-pixels/rust/src/main.rs (15 min)

Output: Understand all patterns, ready to implement Sparky structure

Path 3: Complete Mastery (2-3 days)

  1. All of Path 2
  2. DGX_PIXELS_ORCHESTRATION_PATTERNS.md (complete, 2 hours)
  3. dgx-pixels/CONTRIBUTING.md (25 min)
  4. dgx-pixels/rust/src/app.rs (20 min)
  5. dgx-pixels/rust/src/zmq_client.rs (25 min)
  6. dgx-pixels/docker/Dockerfile* files (30 min)

Output: Complete understanding of all patterns, ready to customize for Sparky

Key Insights

  1. Hierarchical Orchestration - Meta Orchestrator → 4 Domain Orchestrators → 18+ Workstreams
  2. Phase Gates Control Progress - Prevents out-of-order work and integration problems
  3. Justfile is the Command Center - All tasks (build, test, deploy, git) as simple recipes
  4. Nushell Modules for Reusability - Write once, use everywhere
  5. Docker Compose Simplifies Deployment - Reproducible, isolated environments with GPU
  6. ZeroMQ + MessagePack Optimal for IPC - <1ms latency, binary format, flexible patterns
  7. TDD Prevents Integration Hell - Tests first, implementation second
  8. Phase Gates are Non-Negotiable - Save rework and prevent integration surprises
  9. Parallel Saves 30-40% Time - 90-110 days sequential → 60-70 days parallel
  10. Documentation as Code - Specs are contracts, ADRs document decisions

Critical Files to Study

Absolute Must-Read (in order):

  1. /dgx-pixels/CLAUDE.md - Project context and constraints (30 min)
  2. /dgx-pixels/docs/orchestration/meta-orchestrator.md - Core architecture (30 min)
  3. /dgx-pixels/justfile - Task automation (40 min)
  4. /dgx-pixels/docker/docker-compose.yml - Service architecture (30 min)
  5. /dgx-pixels/docs/orchestration/workstream-plan.md - All 18 workstreams (20 min)

Then Reference:

  • /dgx-pixels/scripts/nu/config.nu - Nushell utilities
  • /dgx-pixels/scripts/nu/modules/github.nu - GitHub automation
  • /dgx-pixels/rust/Cargo.toml - Rust dependencies
  • /dgx-pixels/rust/src/zmq_client.rs - ZeroMQ patterns
  • /dgx-pixels/docker/Dockerfile* - Container setup

Using These Documents

For Planning (Week 1)

  • Read ANALYSIS_SUMMARY.md
  • Study DGXPIXELS_PATTERN_REFERENCES.md
  • Review meta-orchestrator.md from dgx-pixels
  • Create Sparky-specific orchestration structure
  • Define domain orchestrators and workstreams

For Setup (Week 2)

  • Copy orchestration docs from dgx-pixels
  • Adapt Justfile for Sparky
  • Set up Nushell modules
  • Create Docker Compose stack
  • Define phase gates

For Implementation (Week 3+)

  • Reference DGX_PIXELS_ORCHESTRATION_PATTERNS.md § 3 (Implementation Patterns)
  • Use github.nu for PR automation
  • Follow Docker Compose patterns
  • Implement ZeroMQ communication
  • Monitor with observability stack

For Troubleshooting

  • Check DGXPIXELS_PATTERN_REFERENCES.md for file locations
  • Reference DGX_PIXELS_ORCHESTRATION_PATTERNS.md for detailed explanations
  • Look at dgx-pixels source code for working examples

Files to Copy from dgx-pixels

# Orchestration structure
cp -r /dgx-pixels/docs/orchestration /sparky/docs/
 
# Automation scripts
cp -r /dgx-pixels/scripts/nu /sparky/scripts/
 
# Justfile
cp /dgx-pixels/justfile /sparky/
 
# Docker setup
mkdir -p /sparky/docker
cp /dgx-pixels/docker/docker-compose.yml /sparky/docker/
cp /dgx-pixels/docker/Dockerfile* /sparky/docker/
cp /dgx-pixels/docker/requirements*.txt /sparky/docker/
 
# Example Rust structure
cp -r /dgx-pixels/rust/src /sparky/rust/
cp /dgx-pixels/rust/Cargo.toml /sparky/rust/

Document Statistics

  • DGX_PIXELS_ORCHESTRATION_PATTERNS.md: 30 KB, 1150 lines, 11 sections
  • DGXPIXELS_PATTERN_REFERENCES.md: 9.5 KB, 314 lines, 20 sections
  • ANALYSIS_SUMMARY.md: 11 KB, 345 lines, 12 sections
  • Total: 50 KB of comprehensive pattern documentation

Confidence Level

All patterns documented are:

  • Proven working (12-week real project with 18 workstreams)
  • Production-ready (deployed on DGX-Spark)
  • Scalable (manages 18 parallel workstreams)
  • Well-documented with source code examples
  • Directly applicable to Sparky
  • Based on raibid-labs proven practices

Next Steps

Today

  1. Read ANALYSIS_SUMMARY.md (15 min)
  2. Skim DGXPIXELS_PATTERN_REFERENCES.md (10 min)
  3. Note important file locations

This Week

  1. Deep read meta-orchestrator.md (30 min)
  2. Study justfile and docker-compose.yml (70 min)
  3. Plan Sparky orchestration structure

Next Week

  1. Create Sparky orchestration docs
  2. Set up domain orchestrator specs
  3. Define all workstreams with dependencies

Week 3+

  1. Spawn Foundation Orchestrator
  2. Monitor Phase Gate 1 progress
  3. Execute parallel workstreams

Questions Answered

What orchestration pattern should Sparky use? → Multi-tier: Meta Orchestrator → Domain Orchestrators → Workstreams. See ANALYSIS_SUMMARY.md.

How are parallel workstreams coordinated? → Phase gates prevent out-of-order work. See Section 2 of DGX_PIXELS_ORCHESTRATION_PATTERNS.md.

What automation tools are used? → Justfile (task entry), Nushell modules (reusable functions), GitHub CLI (automation). See Section 3.

How should Rust + Python communicate? → ZeroMQ with REQ-REP + PUB-SUB patterns, MessagePack serialization. See Section 5.

How is deployment done? → Docker Compose with microservices, NVIDIA Container Toolkit for GPU. See Section 4.

What are phase gates? → Checkpoints that block dependent phases until acceptance criteria met. See ANALYSIS_SUMMARY.md.

How can I replicate this for Sparky? → Copy orchestration structure, adapt for Sparky domain. See DGXPIXELS_PATTERN_REFERENCES.md § Adaptation Notes.


Generated: 2025-11-13 Source: /home/beengud/raibid-labs/dgx-pixels/ (complete analysis) For: Sparky project orchestration design Status: Ready to use