AI-Powered TUI Bevy Reference Implementation Plan
Project Overview
Goal: Build a reference implementation demonstrating AI prompts → Bevy MCP (BRP) → TUI rendering
Foundation: Based on bevy-mcp-ref with bevy_ratatui_camera integration
Key Value Proposition: Enable AI assistants to control and visualize Bevy applications in terminal environments, providing headless operation capabilities and ASCII art rendering.
Phase 1: Foundation Setup
Objective: Establish project structure with core dependencies and basic TUI rendering capability
Tasks
1.1 Project Initialization and Dependencies
-
Complexity: Simple
-
Acceptance Criteria:
- Project forked/cloned from bevy-mcp-ref
- Cargo.toml updated with all required dependencies
- Feature flags configured for flexible builds
- Project compiles successfully with base dependencies
-
Files to Create/Modify:
Cargo.toml- Add bevy_ratatui_camera, ratatui, crossterm dependencies.gitignore- Ensure build artifacts excluded
-
Dependencies Required:
[dependencies] bevy = { version = "0.16", features = ["dynamic_linking"] } bevy_brp_extras = { version = "0.2", optional = true } bevy_ratatui_camera = { version = "0.14", optional = true } bevy_ratatui = { version = "0.9", optional = true } ratatui = { version = "0.30", optional = true } crossterm = { version = "0.28", optional = true } [features] default = [] brp = ["bevy/bevy_remote", "bevy_brp_extras"] tui = ["bevy_ratatui_camera", "bevy_ratatui", "ratatui", "crossterm"] full = ["brp", "tui"] -
Testing Strategy:
cargo check --all-featurespasses
1.2 Project Structure Organization
-
Complexity: Simple
-
Acceptance Criteria:
- Directory structure follows Rust best practices
- Clear separation of concerns between modules
- Documentation directories created
- Example directories organized
-
Files to Create/Modify:
bevy-mcp-ratatui-ref/ ├── src/ │ ├── lib.rs # Library entry point │ ├── main.rs # Binary entry point │ ├── tui/ │ │ ├── mod.rs # TUI module │ │ ├── plugin.rs # RatatuiCameraPlugin wrapper │ │ └── config.rs # TUI configuration │ ├── brp/ │ │ ├── mod.rs # BRP module │ │ └── tools.rs # Custom MCP tools │ └── systems/ │ ├── mod.rs # Game systems │ └── demo.rs # Demo scene systems ├── examples/ │ ├── tui_basic.rs # Basic TUI example │ ├── tui_brp.rs # TUI + BRP example │ └── windowed_tui.rs # Windowed + TUI dual mode ├── docs/ │ ├── implementation-plan.md │ ├── TUI_GUIDE.md │ ├── AI_PROMPTS.md │ └── ARCHITECTURE.md └── tests/ ├── integration_tests.rs └── tui_tests.rs -
Testing Strategy: Directory structure verified, all module declarations compile
1.3 Basic TUI Rendering Plugin
-
Complexity: Medium
-
Acceptance Criteria:
- RatatuiCameraPlugin wrapper created
- Simple TUI rendering pipeline functional
- Camera component properly configured
- Terminal output visible and stable
-
Files to Create/Modify:
src/tui/mod.rs- Public module interfacesrc/tui/plugin.rs- Plugin implementationsrc/tui/config.rs- TUI configuration structures
-
Implementation Details:
// src/tui/plugin.rs use bevy::prelude::*; use bevy_ratatui_camera::{RatatuiCameraPlugin, RatatuiCamera}; pub struct BevyMcpTuiPlugin { pub enable_terminal_output: bool, pub render_scale: f32, } impl Plugin for BevyMcpTuiPlugin { fn build(&self, app: &mut App) { if self.enable_terminal_output { app.add_plugins(RatatuiCameraPlugin) .add_systems(Startup, setup_tui_camera); } } } fn setup_tui_camera(mut commands: Commands) { commands.spawn(( Camera3d::default(), Transform::from_xyz(0.0, 5.0, 10.0) .looking_at(Vec3::ZERO, Vec3::Y), RatatuiCamera, Name::new("TUI Camera"), )); } -
Testing Strategy:
- Manual: Run with TUI feature, verify terminal output
- Automated: Unit tests for plugin registration
Phase 2: Core Integration
Objective: Integrate bevy_ratatui_camera with BRP, enabling dual rendering modes and camera synchronization
Dependencies
- Requires: Phase 1 complete
Tasks
2.1 bevy_ratatui_camera Integration
-
Complexity: Medium
-
Acceptance Criteria:
- RatatuiCamera component properly integrated
- Rendering strategies configurable (ASCII, Unicode, Braille)
- Depth detection enabled and functional
- Performance optimized for real-time rendering
-
Files to Create/Modify:
src/tui/rendering.rs- Rendering strategy managementsrc/tui/widget.rs- Custom ratatui widgetsexamples/tui_basic.rs- Basic TUI example
-
Implementation Details:
// src/tui/rendering.rs use bevy_ratatui_camera::{RatatuiCamera, RenderingStrategy}; #[derive(Component, Reflect, Clone, Copy)] pub enum TuiRenderMode { Ascii, Unicode, Braille, Auto, // Select based on terminal capabilities } pub fn apply_render_mode( mut cameras: Query<&mut RatatuiCamera>, config: Res<TuiConfig>, ) { for mut camera in cameras.iter_mut() { camera.rendering_strategy = match config.render_mode { TuiRenderMode::Ascii => RenderingStrategy::Ascii, TuiRenderMode::Unicode => RenderingStrategy::Unicode, TuiRenderMode::Braille => RenderingStrategy::Braille, TuiRenderMode::Auto => detect_terminal_capabilities(), }; } } -
Testing Strategy:
- Visual verification of different rendering modes
- Performance benchmarks for rendering strategies
- Terminal compatibility tests
2.2 BRP + TUI Dual Rendering Mode
-
Complexity: Complex
-
Acceptance Criteria:
- Both windowed and TUI rendering work simultaneously
- Headless TUI-only mode functional
- Mode switching via configuration
- No visual artifacts or performance degradation
-
Files to Create/Modify:
src/lib.rs- Dual mode configurationsrc/tui/dual_mode.rs- Dual rendering coordinationexamples/windowed_tui.rs- Windowed + TUI example
-
Implementation Details:
// src/tui/dual_mode.rs pub enum RenderingMode { WindowedOnly, TuiOnly, Dual { sync_cameras: bool }, } pub struct DualModePlugin { pub mode: RenderingMode, } impl Plugin for DualModePlugin { fn build(&self, app: &mut App) { match self.mode { RenderingMode::WindowedOnly => { app.add_plugins(DefaultPlugins); } RenderingMode::TuiOnly => { app.add_plugins(MinimalPlugins) .add_plugins(RatatuiCameraPlugin); } RenderingMode::Dual { sync_cameras } => { app.add_plugins(DefaultPlugins) .add_plugins(RatatuiCameraPlugin); if sync_cameras { app.add_systems(Update, sync_camera_transforms); } } } } } -
Testing Strategy:
- Test all three rendering modes independently
- Verify camera synchronization in dual mode
- Performance profiling for each mode
2.3 Camera Synchronization System
-
Complexity: Medium
-
Acceptance Criteria:
- TUI camera mirrors windowed camera position/rotation
- Synchronization can be toggled at runtime
- Independent camera control option available
- Smooth transitions without jitter
-
Files to Create/Modify:
src/systems/camera_sync.rs- Camera synchronization logicsrc/tui/config.rs- Add sync configuration
-
Implementation Details:
// src/systems/camera_sync.rs #[derive(Component)] pub struct MainCamera; #[derive(Component)] pub struct SyncedTuiCamera { pub sync_enabled: bool, pub offset: Transform, } pub fn sync_camera_transforms( main_camera: Query<&Transform, (With<MainCamera>, Without<RatatuiCamera>)>, mut tui_cameras: Query<(&mut Transform, &SyncedTuiCamera), With<RatatuiCamera>>, ) { if let Ok(main_transform) = main_camera.get_single() { for (mut tui_transform, synced) in tui_cameras.iter_mut() { if synced.sync_enabled { *tui_transform = *main_transform * synced.offset; } } } } -
Testing Strategy:
- Unit tests for transform calculations
- Visual verification of synchronized movement
- Test edge cases (camera deletion, multiple cameras)
Phase 3: MCP Enhancement
Objective: Extend BRP with AI-friendly tools for TUI control and entity manipulation
Dependencies
- Requires: Phase 2 complete
Tasks
3.1 AI-Friendly Entity Naming Convention
-
Complexity: Simple
-
Acceptance Criteria:
- All entities have descriptive Name components
- Naming convention documented
- Helper functions for name generation
- Query by name functionality added
-
Files to Create/Modify:
src/brp/naming.rs- Naming utilitiesdocs/NAMING_CONVENTION.md- Naming guidelines
-
Implementation Details:
// src/brp/naming.rs pub struct NameBuilder { category: String, index: Option<usize>, descriptor: Option<String>, } impl NameBuilder { pub fn new(category: impl Into<String>) -> Self { Self { category: category.into(), index: None, descriptor: None, } } pub fn with_index(mut self, index: usize) -> Self { self.index = Some(index); self } pub fn with_descriptor(mut self, desc: impl Into<String>) -> Self { self.descriptor = Some(desc.into()); self } pub fn build(self) -> Name { let mut name = self.category; if let Some(idx) = self.index { name.push_str(&format!(" {}", idx)); } if let Some(desc) = self.descriptor { name.push_str(&format!(" ({})", desc)); } Name::new(name) } } // Examples: // "Sphere 1 (Red)" // "Tree 3 (Oak)" // "Camera (TUI)" -
Testing Strategy: Unit tests for name generation and queries
3.2 Custom MCP Tools for TUI Control
-
Complexity: Complex
-
Acceptance Criteria:
- Custom tools registered with bevy_brp_extras
- TUI rendering mode switchable via MCP
- Camera control tools functional
- Tools documented with examples
-
Files to Create/Modify:
src/brp/tools.rs- Custom MCP tool implementationssrc/brp/mod.rs- Tool registrationdocs/MCP_TOOLS.md- Tool documentation
-
Custom Tools to Implement:
tui/set_render_mode- Change rendering strategytui/toggle_output- Enable/disable TUI outputtui/get_camera_config- Query TUI camera settingstui/set_camera_sync- Control camera synchronizationtui/capture_frame- Capture current TUI frame as stringentity/find_by_name- Query entities by name patternentity/list_named- List all named entities
-
Implementation Details:
// Example custom tool pub fn register_tui_tools(app: &mut App) { app.add_brp_tool("tui/set_render_mode", set_render_mode_tool) .add_brp_tool("tui/capture_frame", capture_frame_tool) .add_brp_tool("entity/find_by_name", find_by_name_tool); } fn set_render_mode_tool( In(params): In<SetRenderModeParams>, mut config: ResMut<TuiConfig>, ) -> Result<(), BrpError> { config.render_mode = params.mode; Ok(()) } -
Testing Strategy:
- Integration tests for each tool
- Test via actual MCP calls from Claude
- Error handling verification
3.3 Rendering Strategy Selection via MCP
-
Complexity: Medium
-
Acceptance Criteria:
- AI can switch between ASCII/Unicode/Braille modes
- Terminal capability detection works
- Mode changes apply without restart
- Visual feedback of mode changes
-
Files to Create/Modify:
src/tui/strategy.rs- Strategy selection logicsrc/brp/tools.rs- Add strategy switching tool
-
Implementation Details:
// MCP tool for AI to switch rendering modes #[derive(Serialize, Deserialize)] pub struct SetRenderStrategyParams { pub strategy: String, // "ascii" | "unicode" | "braille" | "auto" pub apply_immediately: bool, } pub fn set_render_strategy( In(params): In<SetRenderStrategyParams>, mut cameras: Query<&mut RatatuiCamera>, ) -> Result<String, BrpError> { let strategy = match params.strategy.as_str() { "ascii" => RenderingStrategy::Ascii, "unicode" => RenderingStrategy::Unicode, "braille" => RenderingStrategy::Braille, "auto" => detect_best_strategy(), _ => return Err(BrpError::InvalidParams), }; for mut camera in cameras.iter_mut() { camera.rendering_strategy = strategy; } Ok(format!("Rendering strategy set to: {}", params.strategy)) } -
Testing Strategy:
- Test each rendering strategy switch
- Verify terminal detection accuracy
- Performance testing for mode switches
Phase 4: Examples & Documentation
Objective: Create comprehensive examples and guides demonstrating AI-driven TUI control
Dependencies
- Requires: Phase 3 complete
Tasks
4.1 Interactive TUI Demo Scene
-
Complexity: Medium
-
Acceptance Criteria:
- Rich 3D scene visible in terminal
- Interactive elements controllable via AI
- Performance optimized for smooth rendering
- Demonstrates all key features
-
Files to Create/Modify:
examples/tui_interactive_demo.rs- Main demosrc/systems/demo.rs- Demo scene systemsassets/scenes/tui_demo.ron- Scene configuration (optional)
-
Demo Scene Features:
- 5-10 named entities (spheres, cubes, cylinders)
- Animated elements (rotating, bouncing, orbiting)
- Multiple cameras (main, TUI, debug)
- Lighting setup optimized for TUI visibility
- Interactive controls (keyboard + MCP)
- Status display showing FPS, entity count, camera info
-
Implementation Details:
// examples/tui_interactive_demo.rs fn main() { App::new() .add_plugins(( MinimalPlugins, RatatuiCameraPlugin, BrpExtrasPlugin, )) .insert_resource(TuiConfig { render_mode: TuiRenderMode::Auto, target_fps: 30, ..default() }) .add_systems(Startup, ( setup_demo_scene, setup_tui_cameras, setup_brp_server, )) .add_systems(Update, ( rotate_entities, bounce_entities, orbit_entities, update_status_display, )) .run(); } -
Testing Strategy:
- Manual testing in various terminals
- Performance profiling (target 30 FPS in terminal)
- Cross-platform testing (macOS, Linux, Windows)
4.2 AI Prompt Examples Collection
-
Complexity: Simple
-
Acceptance Criteria:
- 20+ documented prompt examples
- Prompts categorized by use case
- Expected outputs documented
- Troubleshooting guide included
-
Files to Create/Modify:
docs/AI_PROMPTS.md- Comprehensive prompt guidedocs/PROMPT_PATTERNS.md- Common patterns and best practices
-
Prompt Categories:
-
Scene Inspection
- “Show me all entities in the TUI view”
- “What’s the current rendering mode?”
- “List all cameras and their positions”
-
Entity Manipulation
- “Make the red sphere twice as large”
- “Move the blue cube to position (5, 0, 0)”
- “Change the tree’s color to dark green”
-
Camera Control
- “Switch the TUI camera to ASCII mode”
- “Move the TUI camera to look down from above”
- “Enable camera synchronization between window and TUI”
-
Scene Creation
- “Spawn a golden sphere at the center”
- “Create a ring of 8 colored cubes around the origin”
- “Add a spotlight pointing at the main cube”
-
Performance & Debugging
- “Show current FPS and rendering stats”
- “What entities are visible to the TUI camera?”
- “Capture the current TUI frame as text”
-
-
Testing Strategy: Verify each prompt works with actual AI assistant
4.3 Comprehensive User Guides
-
Complexity: Simple
-
Acceptance Criteria:
- Installation guide complete
- Quick start tutorial functional
- API reference accurate
- Troubleshooting section comprehensive
-
Files to Create/Modify:
docs/TUI_GUIDE.md- Complete TUI usage guidedocs/ARCHITECTURE.md- System architecture documentationdocs/TROUBLESHOOTING.md- Common issues and solutionsREADME.md- Update with TUI features
-
Documentation Structure:
TUI_GUIDE.md:
- Introduction to TUI rendering in Bevy
- Installation and setup
- Configuration options
- Rendering modes explained
- Camera setup and controls
- Performance tuning
- Terminal compatibility
ARCHITECTURE.md:
- System overview diagram
- Component relationships
- Data flow: AI → MCP → BRP → Bevy → TUI
- Plugin architecture
- Custom tool implementation guide
TROUBLESHOOTING.md:
- Common issues and solutions
- Performance optimization tips
- Terminal compatibility fixes
- BRP connection issues
- Rendering artifacts solutions
-
Testing Strategy: Technical review, user testing with fresh installation
Phase 5: Testing & Polish
Objective: Ensure production quality through comprehensive testing and refinement
Dependencies
- Requires: Phase 4 complete
Tasks
5.1 Integration Test Suite
-
Complexity: Complex
-
Acceptance Criteria:
- 90%+ code coverage for critical paths
- All rendering modes tested
- BRP integration tests passing
- Cross-platform tests successful
-
Files to Create/Modify:
tests/integration_tests.rs- Main integration teststests/tui_rendering_tests.rs- TUI-specific teststests/brp_tools_tests.rs- MCP tool teststests/camera_sync_tests.rs- Camera synchronization tests
-
Test Categories:
-
TUI Rendering Tests
#[test] fn test_ascii_rendering_mode() { let app = create_test_app(RenderMode::Ascii); // Verify ASCII characters in output } #[test] fn test_unicode_rendering_mode() { let app = create_test_app(RenderMode::Unicode); // Verify Unicode characters in output } #[test] fn test_braille_rendering_mode() { let app = create_test_app(RenderMode::Braille); // Verify Braille characters in output } -
BRP Integration Tests
#[test] fn test_set_render_mode_via_brp() { // Test MCP tool calls } #[test] fn test_find_entity_by_name() { // Test entity querying } -
Camera Synchronization Tests
#[test] fn test_camera_sync_enabled() { // Verify cameras stay synchronized } #[test] fn test_camera_sync_disabled() { // Verify independent camera movement }
-
-
Testing Strategy:
- Unit tests for individual components
- Integration tests for system interactions
- End-to-end tests with actual BRP calls
- Performance regression tests
5.2 Performance Optimization
-
Complexity: Medium
-
Acceptance Criteria:
- TUI rendering maintains 30 FPS minimum
- Memory usage stable over time
- BRP latency < 50ms for simple operations
- No memory leaks detected
-
Files to Create/Modify:
benches/rendering_bench.rs- Performance benchmarkssrc/tui/optimization.rs- Performance optimizationsdocs/PERFORMANCE.md- Performance guide
-
Optimization Areas:
-
Rendering Performance
- Frame caching for static scenes
- Culling for off-screen entities
- Adaptive rendering quality based on FPS
- Batch character updates
-
Memory Management
- Reuse buffers for character arrays
- Limit history/frame buffer size
- Clean up unused resources
-
BRP Communication
- Response caching for repeated queries
- Batch operations where possible
- Async processing for heavy operations
-
-
Benchmarking:
// benches/rendering_bench.rs fn bench_ascii_rendering(c: &mut Criterion) { c.bench_function("ascii_render_100_entities", |b| { b.iter(|| { // Benchmark rendering }); }); } -
Testing Strategy:
- Run benchmarks on different hardware
- Profile with cargo flamegraph
- Memory profiling with valgrind/heaptrack
- Stress tests with 1000+ entities
5.3 Documentation Refinement
-
Complexity: Simple
-
Acceptance Criteria:
- All code examples tested and working
- API documentation complete
- Screenshots/GIFs added where helpful
- External review completed
-
Files to Create/Modify:
- All docs/* files - Final polish
CONTRIBUTING.md- Contribution guidelinesCHANGELOG.md- Version historyLICENSE- License file
-
Documentation Improvements:
- Add terminal recording GIFs to README
- Create video walkthrough for YouTube
- Add architecture diagrams (mermaid)
- Create API reference docs
- Add code comments and rustdoc
-
Documentation Checklist:
- All code examples compile and run
- All links working
- Consistent terminology throughout
- Adequate troubleshooting coverage
- Installation tested on fresh systems
- AI prompt examples verified
-
Testing Strategy:
- Documentation review by external developer
- Fresh installation test on multiple platforms
- Verify all examples in docs/
Cross-Cutting Concerns
Error Handling Strategy
- All BRP tools return Result types with descriptive errors
- TUI rendering failures degrade gracefully (fallback to simpler mode)
- Logging at appropriate levels (debug, info, warn, error)
- User-friendly error messages with recovery suggestions
Logging and Debugging
- Structured logging with tracing crate
- Debug overlays for TUI rendering
- BRP request/response logging option
- Performance metrics logging
Configuration Management
- TOML-based configuration files
- Environment variable overrides
- Runtime configuration via MCP tools
- Sensible defaults for all settings
Platform Compatibility
- Primary: macOS, Linux
- Secondary: Windows (with known terminal limitations)
- Terminal capability detection
- Graceful degradation for unsupported features
Success Metrics
Technical Metrics
- All feature flags compile independently
- Test coverage > 85% for core functionality
- TUI rendering maintains 30+ FPS with 100 entities
- BRP latency < 50ms for 95% of operations
- Zero memory leaks over 1-hour stress test
- Works on macOS, Linux, and Windows terminals
User Experience Metrics
- Fresh installation to “Hello World” < 5 minutes
- AI can successfully control app with basic prompts
- Documentation clear enough for Bevy beginners
- At least 3 impressive demo scenes included
- Terminal recording demonstrates wow factor
Community Metrics
- GitHub repository with comprehensive README
- At least 5 documented use cases
- Blog post or tutorial article published
- Example integrations with popular Bevy plugins
- Active issue template and contributing guide
Risk Assessment and Mitigation
Technical Risks
Risk 1: Terminal Compatibility Issues
- Impact: High
- Probability: Medium
- Mitigation:
- Implement capability detection
- Provide fallback rendering modes
- Document known terminal incompatibilities
- Test on wide range of terminals (iTerm2, Alacritty, Windows Terminal, etc.)
Risk 2: Performance Degradation in TUI Mode
- Impact: Medium
- Probability: Medium
- Mitigation:
- Early performance benchmarking
- Adaptive rendering quality
- Frame rate limiting
- Optimization passes in Phase 5
Risk 3: BRP API Changes in Bevy Updates
- Impact: High
- Probability: Low
- Mitigation:
- Pin to specific Bevy version initially
- Monitor Bevy release notes
- Maintain compatibility layer
- Quick response to breaking changes
Risk 4: Complex Camera Synchronization Bugs
- Impact: Medium
- Probability: Medium
- Mitigation:
- Comprehensive test coverage for sync logic
- Optional synchronization (fail-safe: independent cameras)
- Extensive manual testing
- Clear documentation of sync behavior
Project Risks
Risk 5: Scope Creep
- Impact: Medium
- Probability: High
- Mitigation:
- Strict adherence to phase boundaries
- MVP features first, enhancements later
- Clear acceptance criteria for each task
- Regular progress reviews
Risk 6: Documentation Falling Behind Implementation
- Impact: Medium
- Probability: High
- Mitigation:
- Documentation as acceptance criteria for each task
- Phase 4 dedicated to documentation
- Examples included with each feature
- Regular documentation reviews
Timeline Estimates
Phase 1: Foundation Setup - 2-3 days
- 1.1: Project Init - 4 hours
- 1.2: Structure - 2 hours
- 1.3: Basic TUI Plugin - 8-10 hours
Phase 2: Core Integration - 4-5 days
- 2.1: bevy_ratatui_camera - 10-12 hours
- 2.2: Dual Rendering - 12-16 hours
- 2.3: Camera Sync - 6-8 hours
Phase 3: MCP Enhancement - 3-4 days
- 3.1: Entity Naming - 4 hours
- 3.2: Custom Tools - 12-16 hours
- 3.3: Strategy Selection - 4-6 hours
Phase 4: Examples & Documentation - 3-4 days
- 4.1: Interactive Demo - 8-10 hours
- 4.2: AI Prompts - 4-6 hours
- 4.3: User Guides - 8-12 hours
Phase 5: Testing & Polish - 4-5 days
- 5.1: Integration Tests - 12-16 hours
- 5.2: Performance - 8-10 hours
- 5.3: Documentation Polish - 4-6 hours
Total Estimated Time: 16-21 days
Phase Dependencies Graph
Phase 1 (Foundation)
└─→ Phase 2 (Core Integration)
└─→ Phase 3 (MCP Enhancement)
└─→ Phase 4 (Examples & Docs)
└─→ Phase 5 (Testing & Polish)
Each phase must be completed before the next begins. Within phases, tasks can be parallelized where dependencies allow.
Deliverables Summary
Code Deliverables
- Rust library crate with TUI + BRP support
- 3+ working examples demonstrating features
- Comprehensive test suite (unit + integration)
- Performance benchmarks
- CI/CD configuration (GitHub Actions)
Documentation Deliverables
- README.md with quick start guide
- Complete API documentation (rustdoc)
- TUI integration guide
- AI prompt examples (20+)
- Architecture documentation
- Troubleshooting guide
- Contributing guidelines
Demo Deliverables
- Interactive TUI demo application
- Terminal recording (asciinema/VHS)
- Video walkthrough (5-10 minutes)
- Blog post or tutorial article
- Example AI conversation transcripts
Next Steps
- Review this plan with stakeholders/team
- Set up development environment with all dependencies
- Create project repository with initial structure
- Begin Phase 1.1 - Project initialization
- Schedule regular check-ins after each phase completion
Appendix: Key Technologies Reference
Bevy 0.16+
- ECS Architecture: Entity-Component-System game engine
- BRP: Bevy Remote Protocol for external control
- Reflection System: Runtime type information
bevy_ratatui_camera
- Version: 0.14+
- Features: Depth detection, multiple rendering strategies
- Rendering Modes: ASCII, Unicode, Braille
bevy_brp_extras
- Version: 0.2+
- Extended Tools: Component mutation, resource mutation
- Discovery: Format discovery for easier AI integration
ratatui + crossterm
- ratatui: Terminal UI framework
- crossterm: Cross-platform terminal manipulation
- Features: Rich text, layout, events, styling
MCP (Model Context Protocol)
- Purpose: Standardized AI tool calling protocol
- Server: bevy_brp_mcp for Bevy integration
- Tools: Custom tools for game state manipulation
Document Version: 1.0 Last Updated: 2025-11-10 Status: Planning - Ready for Implementation