Workstream 3 Completion Summary
MCP Resources & Tools Implementation
Status: COMPLETE ✅ Date: 2025-11-14 Integration Points: WS1 (MCP Server), WS2 (Hardware Detection), WS4 (Documentation)
Deliverables Completed
1. Type Definitions (src/types/)
- ✅ resources.ts - MCP resource type definitions including URI patterns and descriptors
- ✅ tools.ts - MCP tool type definitions with Zod validation schemas
- ✅ spark.ts - Spark configuration types with data size parsing utilities
2. Hardware Resources (src/resources/hardware.ts)
Implemented 7 hardware resource endpoints that integrate with WS2:
- ✅
dgx://hardware/specs- Complete hardware specifications - ✅
dgx://hardware/topology- Full system topology - ✅
dgx://hardware/gpus- GPU-specific details with NVLink info - ✅
dgx://hardware/cpu- CPU specifications - ✅
dgx://hardware/memory- Memory information - ✅
dgx://hardware/storage- Storage devices - ✅
dgx://hardware/network- Network interfaces
Integration: Uses getHardwareSnapshot() from WS2’s topology module with caching support.
3. System Capabilities Resource (src/resources/capabilities.ts + src/analyzers/capabilities.ts)
- ✅
dgx://system/capabilities- Analyzed system capabilities - ✅ Capability analyzer that provides:
- Hardware summary (CPU cores, memory, GPU count, storage)
- Spark recommendations (executors, cores, memory, partitions)
- GPU capabilities (RAPIDS support, recommended config)
- Framework support detection (Spark, RAPIDS, TensorFlow, PyTorch)
- Performance estimates (throughput, compute TFLOPS, network/storage bandwidth)
- Tailored recommendations based on detected hardware
4. Documentation Resources (src/resources/docs.ts)
- ✅
dgx://docs/spark/{topic}- Dynamic documentation resources - ✅ Integration with WS4 documentation loader
- ✅ Topic listing and routing
- ✅ Markdown content serving
5. MCP Tools (src/tools/)
Tool 1: GPU Availability Checker (gpu-availability.ts)
check_gpu_availability(minMemoryGB?, minUtilization?)- Real-time GPU status from WS2
- Available/busy GPU classification
- Memory and utilization tracking
- Job placement recommendations
Tool 2: Spark Config Generator (spark-config.ts)
get_optimal_spark_config(workloadType, dataSize, numExecutors?, executorMemory?, useGPU?)- Integrates with WS2’s Spark optimizer
- Generates optimized configurations for ETL, ML training/inference, analytics, streaming
- Provides spark-submit command
- Hardware-aware recommendations
Tool 3: Documentation Search (search-docs.ts)
search_documentation(query, limit?, topics?)- Integrates with WS4’s search functionality
- Relevance scoring
- Contextual excerpts
- Search suggestions
Tool 4: Resource Estimator (estimate-resources.ts)
estimate_resources(description, dataSize?, computeType?)- NLP-based workload detection
- Resource requirement estimation
- Feasibility analysis
- Recommendations based on system capabilities
Tool 5: System Health Checker (system-health.ts)
get_system_health(verbose?)- Real-time health monitoring
- Component-level status (CPU, memory, GPU, storage, network)
- Alert generation with severity levels
- Health summaries and recommendations
6. Tool Infrastructure
- ✅ validation.ts - Zod-based argument validation
- ✅ index.ts - Tool registry with unified call interface
7. MCP Server Integration (src/server.ts)
Updated main server to:
- ✅ Register all resources via
listAllResources() - ✅ Handle resource reads via
readResource(uri) - ✅ Register all tools via
listAllTools() - ✅ Handle tool calls via
callTool(name, args) - ✅ Comprehensive error handling
API Surface
Resources (12 total)
dgx://server/info- Server metadatadgx://hardware/specs- Hardware specsdgx://hardware/topology- System topologydgx://hardware/gpus- GPU detailsdgx://hardware/cpu- CPU infodgx://hardware/memory- Memory infodgx://hardware/storage- Storage infodgx://hardware/network- Network infodgx://system/capabilities- System capabilities analysis 10-12.dgx://docs/spark/*- Documentation (dynamic, from WS4)
Tools (5 total)
check_gpu_availability- GPU status and recommendationsget_optimal_spark_config- Spark configuration generationsearch_documentation- Documentation searchestimate_resources- Resource requirement estimationget_system_health- System health monitoring
Integration Summary
With WS1 (MCP Server Foundation)
- Registered resources with ListResourcesRequestSchema handler
- Registered tools with ListToolsRequestSchema handler
- Implemented ReadResourceRequestSchema handler
- Implemented CallToolRequestSchema handler
- All handlers include error handling and logging
With WS2 (Hardware Detection System)
- Uses
getHardwareSnapshot()from topology module - Leverages hardware caching for performance
- Integrates with Spark optimizer from WS2
- Accesses GPU detection for real-time availability
With WS4 (Documentation System)
- Uses
getDocumentationResourceList()for resource discovery - Uses
loadDocumentationResource()for content serving - Uses
handleSearchTool()for search functionality
Testing Commands
# Build project
npm run build
# List all resources
echo '{"jsonrpc":"2.0","id":1,"method":"resources/list"}' | node dist/index.js
# Read hardware specs
echo '{"jsonrpc":"2.0","id":2,"method":"resources/read","params":{"uri":"dgx://hardware/specs"}}' | node dist/index.js
# Read system capabilities
echo '{"jsonrpc":"2.0","id":3,"method":"resources/read","params":{"uri":"dgx://system/capabilities"}}' | node dist/index.js
# List all tools
echo '{"jsonrpc":"2.0","id":4,"method":"tools/list"}' | node dist/index.js
# Check GPU availability
echo '{"jsonrpc":"2.0","id":5,"method":"tools/call","params":{"name":"check_gpu_availability","arguments":{"minMemoryGB":8}}}' | node dist/index.js
# Generate Spark config
echo '{"jsonrpc":"2.0","id":6,"method":"tools/call","params":{"name":"get_optimal_spark_config","arguments":{"workloadType":"ml-training","dataSize":"100GB","useGPU":true}}}' | node dist/index.js
# Search documentation
echo '{"jsonrpc":"2.0","id":7,"method":"tools/call","params":{"name":"search_documentation","arguments":{"query":"GPU memory","limit":5}}}' | node dist/index.js
# Estimate resources
echo '{"jsonrpc":"2.0","id":8,"method":"tools/call","params":{"name":"estimate_resources","arguments":{"description":"Train 1B parameter model","dataSize":"500GB","computeType":"gpu"}}}' | node dist/index.js
# Check system health
echo '{"jsonrpc":"2.0","id":9,"method":"tools/call","params":{"name":"get_system_health","arguments":{"verbose":true}}}' | node dist/index.jsFiles Created/Modified
New Files (18 total)
src/types/resources.tssrc/types/tools.tssrc/types/spark.tssrc/analyzers/capabilities.tssrc/resources/hardware.tssrc/resources/capabilities.tssrc/resources/docs.tssrc/resources/index.tssrc/tools/gpu-availability.tssrc/tools/spark-config.tssrc/tools/search-docs.tssrc/tools/estimate-resources.tssrc/tools/system-health.tssrc/tools/validation.tssrc/tools/index.ts
Modified Files
src/server.ts- Integrated resource and tool handlers
Completion Criteria Met
- All hardware resources implemented and tested
- System capabilities resource with intelligent analysis
- Documentation resources serving content from WS4
- GPU availability tool working with real-time detection
- Spark config tool generating valid configs using WS2 optimizer
- All additional tools implemented (search, estimate, health)
- Resource caching via WS2 integration
- Tool input validation with Zod schemas
- Error handling comprehensive
- MCP protocol compliance verified
- Integration with WS1 MCP server complete
- Integration with WS2 hardware detection complete
- Integration with WS4 documentation complete
Next Steps for WS5 (Intelligence Layer)
WS5 can now enhance:
get_optimal_spark_config- Add ML-based optimization- System capabilities - Add predictive analytics
- Resource estimation - Add historical data analysis
- Health monitoring - Add anomaly detection
WS5 should check for: swarm/dgx-mcp/ws-3/complete before proceeding.
Memory Keys to Store
# Mark resources complete
swarm/dgx-mcp/ws-3/resources-complete
# Mark tools complete
swarm/dgx-mcp/ws-3/tools-complete
# Mark WS3 complete
swarm/dgx-mcp/ws-3/complete
# API details
{
"resources": 12,
"tools": 5,
"integrations": ["WS1-MCP-Server", "WS2-Hardware-Detection", "WS4-Documentation"],
"validation": "Zod",
"protocol": "MCP-1.0"
}Workstream 3 Implementation Complete ✅