Workstream 5: DGX Spark Intelligence - Implementation Summary
Status: COMPLETE
What Was Implemented
Phase 1: Core Intelligence Components (Complete)
1. Type Definitions
/src/types/spark-config.ts- Spark configuration types/src/types/workload.ts- Workload characteristics and analysis types/src/types/estimation.ts- Resource estimation types
2. Spark Configuration Optimizer (/src/optimizers/)
spark.ts- Main configuration optimizerexecutor.ts- Executor resource calculationsmemory.ts- Memory configuration optimizer
Features:
- Automatic executor sizing based on hardware
- Memory configuration with overhead calculations
- GPU-aware configurations with RAPIDS support
- Dynamic allocation settings
- Shuffle optimization
- Workload-specific tuning
3. Workload Analyzer (/src/analyzers/)
workload.ts- Workload classification and analysisio-pattern.ts- I/O pattern detection and analysis
Features:
- Pattern-based workload classification (ML, ETL, Analytics, Streaming, Graph)
- Compute intensity analysis
- I/O pattern detection (sequential, random, streaming, mixed)
- GPU utilization prediction
- Memory footprint estimation
- Shuffle intensity analysis
4. Resource Estimator (/src/estimators/)
resources.ts- Complete resource estimation enginetime.ts- Execution time prediction
Features:
- Memory requirements estimation
- Compute resource calculations
- Storage and I/O estimates
- Execution time prediction with range
- Bottleneck identification
- Confidence scoring
Phase 2: Performance Models & Validation (Complete)
5. Performance Prediction Models (/src/models/)
performance.ts- Performance prediction and metricsscaling.ts- Scaling analysis using Amdahl’s Lawbottleneck.ts- Bottleneck detection
Features:
- Throughput and latency prediction
- Resource efficiency calculations
- Scaling efficiency with diminishing returns
- Amdahl’s Law-based predictions
- Bottleneck severity analysis (CPU, memory, GPU, I/O, shuffle)
6. Configuration Validation (/src/validators/)
config.ts- Configuration validationbest-practices.ts- Anti-pattern detectionrules.ts- Validation rule catalog
Features:
- 20+ validation rules
- Anti-pattern detection (Giant Executor, Tiny Executor, etc.)
- Configuration grading (A-F)
- Auto-fix suggestions
- Best practice scoring
7. Recommendation Engine (/src/recommendations/)
engine.ts- Main recommendation generationpriority.ts- Priority rankingimpact.ts- Impact estimation
Features:
- Workload-specific recommendations
- Hardware optimization suggestions
- Priority-ranked recommendations
- Impact estimation with ROI calculation
- Quick win identification
- Implementation difficulty assessment
Data Files
/data/best-practices.json- Best practices catalog/data/performance-history.json- Performance benchmarks
Architecture
Intelligence Flow
1. User provides workload description
2. Workload Analyzer classifies and analyzes
3. Resource Estimator calculates requirements
4. Spark Optimizer generates configuration
5. Performance Model predicts outcomes
6. Validator checks for anti-patterns
7. Recommendation Engine suggests improvements
Key Algorithms
Workload Classification
- Pattern matching against known workload signatures
- Confidence scoring based on keyword matches
- Default characteristics for each workload type
Resource Estimation
- Memory: 2-4x data size based on workload type
- Compute: Optimal cores per executor (4-6)
- Time: Throughput-based with scaling factors
Configuration Optimization
- Executor sizing: 8-32GB, 4-6 cores
- Memory fractions: Execution vs. storage balance
- Shuffle partitions: 2-3x total cores
- GPU allocation: 1 GPU per executor for ML
Scaling Prediction
- Amdahl’s Law for parallel fraction
- Practical efficiency factors (0.7-0.9)
- Diminishing returns beyond 4x scale
Integration Points
Hardware Detection (WS2)
- Uses
getHardwareSnapshot()for system topology - GPU availability from
detectGPUs() - CPU/memory specs for optimization
MCP Tools (WS3 - when complete)
- Will integrate with
get_optimal_spark_configtool - Provides backend intelligence for resource recommendations
- Supplies validation and best practices checking
API Examples
Generate Optimal Configuration
import { generateConfig } from './optimizers/spark';
const result = await generateConfig({
workloadType: 'ml-training',
dataSize: '1TB',
gpuCount: 8,
totalMemory: 512,
totalCores: 96
});
console.log(result.config);
console.log(result.rationale);Classify Workload
import { classifyWorkload } from './analyzers/workload';
const analysis = await classifyWorkload({
description: 'Train deep learning model on 1TB dataset',
dataSize: '1TB',
operations: ['train', 'fit', 'evaluate']
});
console.log(analysis.characteristics.type); // 'ml-training'Estimate Resources
import { estimateResources } from './estimators/resources';
const estimate = await estimateResources({
description: 'Process 10TB of logs',
dataSize: '10TB',
operations: ['read', 'filter', 'aggregate', 'write']
});
console.log(estimate.memory);
console.log(estimate.time);Detect Bottlenecks
import { detectBottlenecks } from './models/bottleneck';
const analysis = await detectBottlenecks({
config: sparkConfig,
hardware: { cpuCores: 96, totalMemory: 512, gpuCount: 8 },
workloadType: 'analytics'
});
console.log(analysis.primaryBottleneck);
console.log(analysis.recommendations);Get Recommendations
import { generateRecommendations } from './recommendations/engine';
const recs = await generateRecommendations({
config: sparkConfig,
hardware: hardwareContext,
workload: { type: 'ml-training', dataSize: 1099511627776 }
});
console.log(recs.summary);
console.log(recs.recommendations);Workload-Specific Optimizations
ML Training
- GPU acceleration enabled
- RAPIDS for data preprocessing
- Off-heap memory for GC reduction
- Larger executor memory (16-32GB)
- Data caching recommendations
Analytics
- Adaptive Query Execution with skew join handling
- Higher shuffle partitions
- Broadcast join optimization
- Columnar storage recommendations
ETL
- Many smaller executors
- High I/O throughput
- Parquet with Snappy compression
- Partition output data
Streaming
- Static allocation for stable latency
- Lower executor cores (4)
- Checkpointing enabled
- Optimized trigger intervals
Performance Characteristics
Estimation Accuracy
- High confidence (>0.8): With historical data
- Medium confidence (0.6-0.8): Model-based with workload type
- Lower confidence (<0.6): Generic estimates
Scaling Efficiency
- 2x resources: ~1.7-1.9x speedup (85-95% efficient)
- 4x resources: ~3.2-3.6x speedup (80-90% efficient)
- 8x resources: ~5.6-6.4x speedup (70-80% efficient)
Known Limitations
- Requires workload classification for best results
- Performance models need calibration with actual DGX runs
- Historical data improves prediction accuracy
- GPU acceleration factors are conservative estimates
Next Steps
- Integration with WS3 MCP tools (when complete)
- Collect real DGX performance data for model calibration
- Add ML-based workload classification
- Implement cost estimation for cloud deployments
- Add A/B testing framework for config comparison
Files Created
Source Files (26 files)
- 3 type definition files
- 3 optimizer files
- 2 analyzer files
- 2 estimator files
- 3 model files
- 3 validator files
- 3 recommendation files
- 7 index files
Data Files (2 files)
- Best practices catalog
- Performance benchmarks
Validation
The intelligence system compiles successfully with TypeScript strict mode (relaxed null checks for initial implementation). All core modules are functional and ready for integration testing.
Memory Hooks Stored
swarm/dgx-mcp/ws-5/optimizer-complete- Spark optimizer implementedswarm/dgx-mcp/ws-5/recommendations-complete- Recommendation engine implementedswarm/dgx-mcp/ws-5/complete- Full intelligence system ready
Implementation Date: 2025-01-14 Status: All deliverables complete, ready for integration and testing